Logo of the Information System for Agriculture and Food Research

Information System for Agriculture and Food Research

Information platform of the Federal and State Governments

Climate-smart adaptation strategies for agriculture II - gas emission work package (optimized model farm)

Project

Climate change

This project contributes to the research aim 'Climate Change'. What are the sub-aims? Take a look:
Climate change


Project code: TI-AK-08-PID1508
Contract period: 01.10.2013 - 30.09.2016
Purpose of research: Applied research

How can we improve cropping systems, tillage and fertilization in order to reduce agricultural greenhouse gas emissions? We tackle these questions in two field studies in North Rhine-Westphalia and Lower Saxony. The potential of optimized cropping rotations and farm structures to lower agricultural climate effects is investigated with three model farms (cash crop farm without livestock, livestock farm with biogas plant and climate-optimized farm) under the lead of the South Westphalia University of Applied Sciences. Model farms with respective cropping rotations were established in the first funding phase in Soest and Braunschweig and will be continued for three further years of field studies starting in 2013/14. N fertilizer optimum is determined in selected treatments of the trial with exact monitoring of growth and N uptake. Fertilization with biogas digestate is done according to actual nutrients stocks in the model farms and supplementary mineral fertilization is varied in comparison to setpoint values in order to derive mineral fertilizer equivalents for the organic fertilization. Maize cropping in the climate optimized farm will include a comparison between trailing hose fertilization and strip-till fertilization (below-root) at the Soest experiment. The Thünen Institute of Climate-Smart Agriculture is responsible for the project part dealing with the emission of ammonia (NH3) and the greenhouse gases nitrous oxide (N2O) und methane (CH4). The aim is to assess the impact of biogas digestate application on emissions in maize. At the Soest site, we also investigate the below-root/strip-till application technique in comparison to conventional trailing hose application on N2O and NH3 fluxes. Moreover, organic fertilization with digestate is compared to mineral fertilization in winter wheat. Additional investigations for soil parameters and activities is done to elucidate regulation of gaseous N emissions and to enable generalization of results. We participate in the field studies conducted by South Westphalia University of Applied Sciences by measuring ammonia emissions following organic fertilization and weekly measurement of N2O and CH4 fluxes using closed chambers during two years. Soil temperature, water content and mineral nitrogen (Nmin) are monitored to elucidate the control of gas emissions. Nitrate leaching is estimated from weekly measurements of Nmin in the top soil as well as Nmin profiles in the rooting zone in spring and autumn. This work is done in collaboration with the Thünen Institute of Agricultural Technology. Stable isotope analysis of gas samples is used to assess processes of N2O production and reduction. Isotope tracer experiments are planned to further elucidate N dynamics in the laboratory.

show more show less

Subjects

Framework programme

BMEL Frameworkprogramme 2008

Advanced Search