Logo des Forschungsinformationssystems Agrar und Ernährung

Forschungsinformationssystem Agrar und Ernährung

Informationsportal des Bundes und der Länder

Optimierung von Aquaponik im lokal-klimatischen, wirtschaftlichen und kulturellen Kontext: Vorteilsmaximierung einer zirkulären Bioökonomie zur Lebensmittelproduktion

Projekt

Produktionsverfahren

Dieses Projekt leistet einen Beitrag zum Forschungsziel „Produktionsverfahren“. Welche Förderer sind dazu aktiv? Welche Teilziele gibt es dazu? Schauen Sie nach:
Produktionsverfahren


Förderkennzeichen: 516754420
Laufzeit: 01.01.2023 - 31.12.2025
Forschungszweck: Angewandte Forschung

Sustainable food production depends on the recovery of water, energy, and nutrients from waste streams within existing supply chains. Greenhouse hydroponic systems (HYP) and recirculating aquaculture systems (RAS) are two intensive food production systems that in combined production as an aquaponics system (AP) can utilize fish wastes as fertilizers, while recycling water and energy to increase both systems' sustainability and efficiency. However, despite significant environmental benefits, such systems current infrastructure costs limit widespread application. Implementing relevant technology for such resource-efficient systems requires designs that can optimize performance. AquapnicsOpti contributes to innovative, decarbonized, and resource-efficient food production systems by improving nutrient reuse, increasing energy efficiency and reducing fossil fuel dependence, reducing freshwater needs, and developing scalable models for improving microbial relationships for fish and plant health. In direct collaboration with stakeholders, we will analyze design aspects, business models and consumer preferences, while also carefully examining barriers and economic challenges of AP facilities in different countries. The consortium will take a holistic approach in the context of agroecology to evaluate AP operations in diverse geo-climatic zones and document how adaptations of their technologies and practices can better support local and regional food production. Relevant technology for such resource-efficient systems requires designs that explore and quantify multifactor interactions of biological components to maintain or enhance productivity beyond the capabilities of current AP systems. Scientific testing of microbial digester designs aims to maximise decomposition of fish wastes and provide plant crops with essential nutrients in bioavailable forms. Development and integration of smart biosensors to automatically collect water quality data and automate systems will facilitate operational monitoring and controls that are currently labour-intensive and not always timely. Design innovations will consider existing fish-plant AP pairs but evaluate and test the potential of other culturally acceptable species that would have production and marketing appeal. Simulations of operational conditions will be used to compare and contrast situational variables for AP stakeholder operators to consider, and for design engineers to optimise before modifications are implemented. Integral to this research, we will analyze a broad range of quantitative and qualitative data about stakeholder attitudes, regulatory policies and socio-economic conditions within the diverse geo-climatic zones represented among our project partners. Six research work packages (WP) emphasise integration across disciplinary lines, and the seventh WP ensures that sustained communications among them results in interdisciplinary deliverables and dissemination.

mehr anzeigen weniger anzeigen

Fachgebiete

Erweiterte Suche