Logo of the Information System for Agriculture and Food Research

Information System for Agriculture and Food Research

Information platform of the Federal and State Governments

Nano-SIMS for soil science - exploring elemental distribution, formation and properties of submicron sized particles in soils

Project

Environment and ressource management

This project contributes to the research aim ' Environment and ressource management'. Which funding institutions are active for this aim? What are the sub-aims? Take a look:
Environment and ressource management


Project code: 119111086
Contract period: 01.01.2009 - 31.12.2010
Purpose of research: Basic research

We apply for a NanoSIMS 50L ion microprobe instrument for the analysis of soil biogeochemical properties. The specific features of the novel NanoSIMS 50L microprobe technology with the simultaneous analysis of up to seven ion species with high sensitivity and resolution make it an unprecedented tool for the analysis of biogeochemical processes and properties of soils and thereby will boost our ability to locate the association of elements/isotopes in soil structural components at the submicron scale, especially in combination with well-established labelling techniques. NanoSIMS will thus help to unravel the heterogeneous composition and three-dimensional architecture of submicron sized organo-mineral associations in soils. Our research will first focus on the simultaneous analysis of the spatial distribution of C, N, Si and Fe in organo-mineral associations and in a second step be applied to labelling studies: This unique combination provides one of the most promising approaches for exploring the C and N cycle of soils at a resolution not possible before. The NanoSIMS technique introduces new scales to combined multielement and isotope measurements at the submicron scale and thus will allow a major step forward in the understanding of soil formation, with significant implications for our concepts of the soil C and N cycle, soil structural stability, and the sorptive properties of the soil interface.

show more show less

Subjects

Excutive institution

Chair of Soil Science

Advanced Search